1) What is the Auxiliary Water Supply System, and what is its primary function?

The Auxiliary Water Supply System (AWSS) is a non-potable fire-suppression water system that was built the decade following the catastrophic 1906 San Francisco earthquake. The purpose of the AWSS is to provide the San Francisco Fire Department (SFFD) with a high-pressure fire suppression water system that can be utilized during large fires. The system is vital for protection against the loss of life, homes, and businesses from fire following an earthquake and non-earthquake multiple-alarm fires.

There are two aspects of the AWSS that are critical to its success:

1. Distribution infrastructure: The AWSS consists of over 135 miles of high-pressure pipeline and hydrants. The system utilizes approximately 30 seismically-reliable motorized valves, allowing the SFPUC to valve off sections of the system, to ensure that pressure is maintained in areas where fires are occurring.

2. The water supply that feeds into the AWSS distribution infrastructure. The primary source of the AWSS is the SFPUC’s Hetch Hetchy Water System.

The original AWSS system consisted of three reservoirs and two seawater pumping stations. Their capacities:

- 10.5 million gallon Twin Peaks Reservoir,
- 0.5 million gallon Ashbury Heights Tank, and
- 0.75 million gallon Jones Street Tank.
- Seawater pump station #1: 10,000 GPM (located in SOMA)
- Seawater pump station #2: 10,000 GPM (located near Aquatic Park)

In 2010, the management of the AWSS was transferred to the San Francisco Public Utilities Commission (SFPUC). A shared goal of the SFPUC and SFFD is doing the following to expand and improve the reliability of the water supply serving the AWSS. The agencies have undertaken the following to do so:

- 95% completion of the $4.8 billion Water System Improvement Program (WSiP), providing robust seismic upgrades to the pipelines, reservoirs, and infrastructure that supply water to San Francisco and the greater Bay Area;
- Added a larger pipe to increase the speed of re-filling the Twin Peaks reservoir from the 11 million gallon Summit Reservoir;
- Connecting the 70 million gallon South Basin of the University Mound Reservoir to AWSS (expected completion in 2018);
- Replaced the engines and installed remote control capabilities for Seawater pump station #1 to allow for remote operation;
- Structural and seismic upgrades of Seawater pump station #2 (expected completion in 2020);
- Designing the installation of a pump station at Lake Merced to feed into the AWSS in the future if funding is available;
• Analyzing the usage of the 90 million gallon North Basin of Sunset Reservoir as a water Supply for a Potable AWSS in the Sunset and Richmond Districts; and

• Investigating the installation of a seawater pump station at Ocean Beach to serve as a secondary source of water for fire suppression for the Sunset and Richmond Districts.

In addition to the AWSS, the SFPUC’s low-pressure drinking water system and its low-pressure hydrants, as well as approximately 180 cisterns throughout San Francisco, can be pumped and utilized by SFFD Fire Trucks for fire-suppression.

2) Is the AWSS located throughout San Francisco? If not, why?

The AWSS was built after the 1906 earthquake, and its location, primarily in the northeast portion of San Francisco, corresponds to the location of the central business district and the majority of the city’s population at that time.

The San Francisco Public Utilities Commission (SFPUC), SFFD, and San Francisco Public Works (SFPW) are committed to increasing fire protection throughout San Francisco. Since the passage of the Earthquake Safety and Emergency Response Bond in 2010, the three agencies have been implementing projects to improve the system’s seismic reliability and range of coverage. The three agencies will continue to implement projects utilizing new and proven technologies that improve upon the original system design. There have been many advancements in earthquake resistant pipeline design and materials, hydrants, and seismic valves since the early 1900s, and the SFPUC intends to use the best possible technology available to meet the performance standards of the SFFD. Please standby for future updates to the SFPUC webpage for images, graphics, and maps showcasing the original AWSS system, recent upgrades, and future projects.

3) Who manages the AWSS, the SFPUC or the SFFD? How does the SFFD know that the AWSS system is being adequately and reliably maintained?

The SFFD owned and managed the AWSS and the fire hydrants on the potable water system from the early 1900s until 2010. During this time the SFFD collaborated with staff from San Francisco Public Works (SFPW) to implement upgrades to the system. In 2010, the AWSS was transferred to the SFPUC, the City’s experts in water supply piping systems. By bringing in the SFPUC to work with SFFD and SFPW, City leaders created an interagency team with all of the expertise needed to manage, operate, and update the AWSS.

The SFFD is considered the end user of the system, and therefore system improvements and expansion completed by SFPUC must meet the rigorous and high-quality standards of the SFFD. The SFFD and SFPUC meet monthly to discuss operations of the AWSS, report on maintenance activities, review capital and developmental project design and status, and communicate on policies and procedures that affect both departments.

This partnership presents the best of both worlds for San Franciscans. The women and men of SFFD are internationally-recognized for their expertise, experience, and bravery in fighting fires. Similarly, the SFPUC, with its Hetch Hetchy Water System, is recognized as one of the top water agencies in the world. The SFPUC has hundreds of engineers that are experts in designing, expanding, and improving water systems. Additionally, the SFPUC has over 80 plumbers and dozens of construction management experts in-house that are dedicated to providing high-quality maintenance and oversight of the construction projects needed to keep the AWSS functioning for the SFFD’s use.

With the two agencies working together, in partnership with SFPW, the City of San Francisco has the experts it needs to successfully operate, expand, and improve the AWSS.

4) What are the SFPUC and SFFD doing to increase fire protection in the areas of the City that do not have the AWSS?
When the SFPUC took over control of the system, the agency worked with SFFD to complete a review of all existing facilities and a comprehensive Planning Study.

The analysis modeled the hydraulic reliability of the existing AWSS after a major earthquake. In this context of this study, hydraulic reliability is defined as the percentage of the water needed by SFFD to fight fires that would be met by the AWSS and other sources after a 7.8 earthquake on the San Andreas Fault.

Our analysis showed that the 2010 AWSS was 47% reliable, and thus only able to provide about half of the water needed for city-wide firefighting following a 7.8 earthquake. Utilizing this information, the SFPUC, SFFD, and SFPW identified projects that would increase system reliability and could be funded by the 2010 and 2014 Earthquake Safety and Emergency Response (ESER) Bonds authorized by San Francisco voters. Decisions on which projects to implement utilizing bond funds are based on a given project’s ability to improve the reliability score for the Fire Response Area that the given project serves and to increase the likelihood of delivering water after an earthquake.

Bond-funded projects make seismic upgrades to the system and repair, replace, and extend system components to increase the ability to provide adequate water for firefighting. Funding is allocated to repair, replace, and extend system components to improve the ability to provide adequate water for firefighting purposes following a major earthquake and during multiple-alarm fires from other causes. This includes repairs and upgrades to core facilities, pipelines, and tunnels, and construction of new cisterns.

The following projects have been completed utilizing the funds from the 2010 and 2014 bonds:

- Installation of 30 new cisterns (with 15 of these cisterns installed in the Sunset and Richmond districts);
- Reliability upgrades at the three primary source supplies – Twin Peaks Reservoir, Ashbury Heights Tank, and Jones Street Tank;
- Added a larger pipe to increase the speed of re-filling the Twin Peaks reservoir from the 11 million gallon Summit Reservoir;
- Replaced the engines and installed remote control capabilities for Seawater pump station #1 to allow for remote operation;
- 6 pipeline and tunnel projects.

The following projects are in construction and/or design phase:

- Connecting the 70 million gallon South Basin of the University Mound Reservoir to AWSS (expected completion in 2018);
- 16 pipeline and tunnel projects;
- Motorizing critical seismically-reliable valves for remote control, and improving the electronic control system of the valves; and
- Structural and seismic upgrades of Seawater pump station #2 (expected completion in 2020);
- Designing the installation of a pump station at Lake Merced to feed into the AWSS in the future if funding is available;
- Preliminary analysis for a Potable AWSS for the Sunset and Richmond Districts. Additional information on that system can be found in questions 6-11.

Once fully completed, the projects implemented with the ESER 2010 bond funds will increase the citywide reliability score from 47% to 67%. The full completion of the projects implemented with the ESER 2014 bond funds will increase the citywide reliability score from 67% to 87%. Construction of additional recommended future projects will increase the citywide reliability score to 96%.
5) Who makes decisions about the selection and implementation of AWSS projects? Who reviews the progress and implementation of AWSS capital projects?

Overseeing the selection and implementation of AWSS projects is the Management Oversight Committee consisting of SFPUC General Manager Harlan Kelly, SFFD Chief Joanne Hayes-White, SFPW Director Mohammed Nuru, and SFPUC Assistant General Manager of Water Steve Ritchie.

The San Francisco Capital Planning Committee, consisting of the City Administrator and including the President of the Board of Supervisors, the Mayor’s Budget Director, the Controller, the City Planning Director, the Director of Public Works, the Airport Director, the Executive Director of the Municipal Transportation Agency, the General Manager of the Public Utilities System, the General Manager of the Recreation and Parks Department, and the Executive Director of the Port of San Francisco, reviews the progress and implementation of AWSS capital projects. Capital Planning Committee meetings are open to the public. Please find more info at the Committee’s webpage.

6) Are the SFPUC and SFFD looking at something called a Potable AWSS for fire suppression on the Westside of San Francisco. What is a Potable AWSS? How does it function? How is it different from the existing AWSS?

The word “potable” is defined as “safe to drink”. The Potable AWSS currently under analysis will connect to the 90 million gallon North Basin of the Sunset Reservoir, and will provide a high-pressure firefighting system for the SFFD to fight fires in the Richmond and Sunset Districts. The Potable AWSS will meet the same rigorous standards required by SFFD to fight large fires, and will utilize the same earthquake resistant pipes, seismically-reliable valves, hydrants, and components utilized by the AWSS, and therefore will be designed to function at the high-pressure level required by SFFD. The Potable AWSS project is currently in the planning and analysis phase. The SFPUC will work with SFFD to design the system with operational capabilities and design criteria standards equal to or exceeding the existing AWSS.

The Potable AWSS will also have roughly 5 connections to potable water pipes in the Sunset and Richmond districts. These connections will utilize the same valves as the 30 valves the existing AWSS currently uses to isolate sections of the AWSS to maintain system pressure. Additionally, these 5 valves will be tested at the same schedule as the existing valves to ensure their performance during an incident. During non-fire events, the Potable AWSS pipeline will be one of many pipes supplying drinking water to the Richmond and Sunset districts.

In the event of a major fire, the approximately five isolation valves will be closed automatically, remotely, or manually, which are the same methods that the 30 valves on the existing AWSS utilize. These five isolation valves will be closed so that the Potable AWSS will be disconnected from the City’s low-pressure water system and therefore can provide reliable high-pressure water for fire-fighting. If the Potable AWSS is isolated for firefighting use, homes and businesses will continue to be served by other redundant low-pressure drinking water distribution pipes, assuming that those low-pressure pipes have not incurred numerous breaks and leaks during the earthquake.

An additional benefit of the Potable AWSS is that it will be designed and constructed to meet required AWSS performance standards, and the system will be rated to meet drinking water standards. This means that after firefighting following an earthquake, the Potable AWSS will be able to provide drinking water to the Sunset and Richmond Districts even if the City’s low-pressure drinking water distribution system incurs numerous breaks and leaks.

7) Does the Potable AWSS provide an equivalent amount of fire suppression when compared to the existing AWSS? Does the Potable AWSS provide the water pressure and supply of water needed by SFFD to fight small and large fires?
Yes. The Potable AWSS will be designed to meet all SFFD performance requirements. The SFFD will not reduce or lower their robust performance standards, and therefore the SFPUC must design, construct, maintain, and operate the Potable AWSS system to meet these standards. The SFPUC is currently working in conjunction with SFFD to design a system that will have pressure and performance capabilities equal to or exceeding AWSS.

8) Does the Potable AWSS use the same type of earthquake resistant piping and valves as the AWSS?

Yes. The Potable AWSS will use earthquake resistant piping that is equal or better than the current AWSS piping design standard. Additionally, the Potable AWSS will utilize the same seismically-reliable valves as the 30 existing valves currently utilized by the AWSS to isolate sections of the system to ensure supply reliability in areas with fires. The hydrants utilized will also be the same as the existing AWSS. All of these components will be able to properly function at the high-pressure levels required by SFFD.

9) The Potable AWSS relies on automatic valves to boost the water pressure to the level needed to fight big fires. What if the automatic valves fail, will SFFD be without the water they need to fight big fires? Does the existing AWSS rely on these automatic valves to fight fires? Does the Potable AWSS rely on more of these valves than the existing AWSS?

The potable AWSS will be isolated after an earthquake from the remainder of the distribution system by seismically-reliable motorized valves using the same method and equipment as current AWSS valves. All valves, future and existing, have redundant safeguards and a maintenance program that will ensure their performance. The valves can be operated manually if the valve actuators fail, just like the existing AWSS motorized valves. The valves are utilized by the existing AWSS and the future Potable AWSS to isolate sections of pipe to ensure that the systems provide the water supply and pressure needed by SFFD to fight big fires.

The quantity of the motorized valves on the future Potable AWSS will be dependent on the length of the Potable AWSS pipeline constructed, but is anticipated to be approximately 5 valves.

10) Are there other cities that have implemented a Potable AWSS? Or do other cities utilize systems similar to the existing AWSS?

Only one other city in the world, Vancouver, B.C. Canada, has been identified as having an isolated secondary firefighting system similar to the existing AWSS. Vancouver’s system is less than 10 miles in length, while ours has over 135 miles.

To our knowledge, all other cities rely on their low-pressure potable water system and hydrants for fire-fighting. In Japan, a country that has similar seismic risk to that of San Francisco, cities utilize a system similar to the proposed Potable AWSS. The Japanese system is designed similar to our proposed Potable AWSS - for fighting a large fire after an earthquake, seismically-reliable water transmission mains and hydrants are isolated from the rest of the distribution system using seismically-reliable valves. This allows the Japanese’s seismically reliable mains to be increased in pressure and used for fire-fighting. After the fires are suppressed, the Japanese system is used to provide drinking water to residents and businesses.

Recently a team of Japanese water engineers came to San Francisco to showcase the success of their piping system and their experience using Kubota pipes to SFPUC and SFFD staff. The Japanese team highlighted the success of their system and its piping in its utilization after earthquakes to fight fires.

Japan’s successful implementation and use of a system similar to the proposed Potable AWSS showcases that the approach and technology do work in fighting fires after a major earthquake.
11) Is the SFPUC is proposing to fill the Potable AWSS from Sunset Reservoir. How much water is in Sunset Reservoir?

The North and South Basins have a combined capacity of 176 million gallons. The North Basin, with a capacity of 90 million gallons, will be connected to the Potable AWSS. The North Basin recently underwent a $64 million seismic upgrade, and is designed to withstand a 7.9 San Andreas Fault earthquake. It can be isolated from the South Basin, and therefore all 90 million gallons could be used for firefighting purposes.

12) Can Sunset Reservoir provide enough water for SFFD and civilian use during a fire? How long will the water in Sunset Reservoir last if it the reservoir is unable to be re-filled by the SFPUC’s Hetch Hetchy Water System, the SFFD is utilizing the Potable AWSS to fight a fire, and civilians are utilizing the reservoir?

If firefighting requires a flow of 14,000 gallons per minute for the Sunset and Richmond districts, the 90 million gallon water supply in the North Basin of Sunset Reservoir will last for 4.5 days. This assumes that no additional water is added from the Hetch Hetchy Water System, which is very unlikely. Please see question #12 for additional info.

During an emergency situation, the South basin of Sunset Reservoir will be isolated from the North Basin, allowing the North Basin to be used solely for firefighting purposes. The 86 million gallon South Basin will still be connected to the City’s low-pressure drinking water distribution piping system so that residents and businesses can receive drinking water while fires are being fought. In an Earthquake situation, residents and businesses may not receive continuous drinking water from the South Basin as fires are being fought, if there are breaks and/or leaks in the low-pressure drinking water pipes that connect to the South Basin. After the fires are put out, the Potable AWSS, connected to the North Basin, will be able to provide drinking water to the Sunset and Richmond Districts, even if the City’s low-pressure drinking water distribution system incurs numerous breaks and leaks.

13) Will Sunset Reservoir be able to function after an earthquake? How long will it take for the water supplying Sunset Reservoir to arrive to the reservoir if there is a major earthquake?

In 2008, seismic improvements to the North Basin of Sunset Reservoir were completed for $64 million under the SFPUC’s Water System Improvement Program (WSIP). Also under the WSIP, seismic improvements were made on the pipelines leading to Sunset Reservoir. Thus, it is anticipated that the reservoir can be replenished from the Hetch Hetchy Water System within 24 hours of a major seismic event. Therefore, the Hetch Hetchy Water System will be able to re-fill the North Basin of the Sunset Reservoir prior to the Potable AWSS draining it after 4.5 days of use.

The Hetch Hetchy Water System consists of 9 reservoirs, capable of supplying up to 265 million gallons of water per day. The WSIP includes $4.8 billion in upgrades to the system, increasing its seismic reliability and ability to provide water to the Bay Area after a large earthquake.

14) The Pacific Ocean is right next to the Westside of San Francisco. Why aren’t we filling the Potable AWSS from there? Doesn’t the AWSS use Bay Water?

The primary water source for the existing AWSS is the 10 million gallon Twin Peaks Reservoir, 0.5 million gallon Ashbury Heights Tank, and 0.75 million gallon Jones Street Tank. As part of the AWSS bond-funded projects, the Summit Reservoir, with its 11 million gallons of storage, can now be better used by the AWSS. This reservoir serves as a back-up, and would only be utilized by the AWSS during a large fire.

If additional water sources are needed, there are 2 seawater pump stations on the east side of San Francisco that can be utilized to supply a back-up water supply to the AWSS. There have been no known uses of these 2 stations during a fire since their installation in the early 1900s.
The Sunset Reservoir North Basin, with its large capacity and seismic reliability, provides an excellent, existing supply that can be used for the proposed Potable AWSS at no additional cost to rate payers. This reservoir is nine times larger than the existing Twin Peaks reservoir, the primary source utilized by the AWSS.

In the future, an existing SFPUC pump station at Lake Merced will be modified to pump Lake Merced water into new AWSS pipelines that will be installed by the Park Merced development project. Eventually, the Park Merced AWSS pipeline could be connected to the existing AWSS pipeline near Ocean Avenue. Current work will connect the 140 million gallon University Mound Reservoir to the existing AWSS.

The SFPUC is also analyzing new seawater pump stations that could be developed along Ocean Beach and by Hunters Point Shipyard, and will provide updates to the public as the analysis is completed. These future pump stations could serve as back-up supplies for the AWSS and Potable AWSS. Please note that the Potable AWSS would have to be converted to an AWSS if seawater was used, which would cause the system to lose the benefit of being a seismically reliable potable water distribution system for the Sunset and Richmond Districts.

15) How long will it take to install the Potable AWSS in the Sunset and Richmond District?
I want fire-suppression in the Westside of San Francisco ASAP.

The Potable AWSS is in the planning phase. Pipeline construction could begin in 2019 if the Management Oversight Committee gives direction to proceed with this project. SFPUC is requesting approval for funding of one mile of pipeline per year at $10 million per mile. Depending on the final length of Potable AWSS pipeline, the construction could be completed in four to eight years. A four-mile pipeline would take four years, while an eight-mile pipeline would take eight years. Each mile of pipeline installed provides significantly greater firefighting protection.

Please note that because the Potable AWSS option provides potable water benefits to the Sunset and Richmond Districts, bond funding and SFPUC rate payer funds could be used to pay for its implementation.

The same is not true if a traditional AWSS is deployed in the Sunset and Richmond Districts. Traditional AWSS systems can only utilize bond funding. Due to this distinction, a traditional AWSS would likely have a longer implementation timeline than a Potable AWSS because there is not enough bond funding in place to complete a traditional AWSS at this time. A Potable AWSS project could begin implementation more quickly using SFPUC rate payer funds.

16) How do population growth and new buildings affect firefighting reliability, and will AWSS be expanded to growing areas of San Francisco, such as new development areas in the east and southeast areas of San Francisco?

As new developments and population growth occur in San Francisco, the water required for firefighting to address post-earthquake fires may change. SFPUC is modelling the effects of new developments on AWSS capacity requirements, both within the new developments and in the City as a whole. The SFPUC and SFFD are working together to specify new AWSS piping and hydrants required within the new developments. Additionally, developers are required to contribute financing towards, or construct, AWSS facilities such as pipelines or pump stations, for additional firefighting needs. These requirements are specified in the Development Agreements approved by the Board of Supervisors for new, large development projects.